Austin Radiological Association
LUNG VENTILATION STUDY
(Xe-133 Gas)

Overview
- The Lung Ventilation Study demonstrates the distribution of ventilation, air space, and air trapping within the lungs in the posterior projection, but images in other projections can be acquired concurrently.

Indications
- Diagnosis of pulmonary embolism, particularly when helical CT is contraindicated because of renal insufficiency or a history of a bona fide contrast reaction.
- Evaluation of regional ventilation.

Examination Time
- Initial images: 10 minutes.

Patient Preparation
- Rehearse the patient through the breathing maneuvers required for image acquisition.

Equipment & Energy Windows
- Gamma camera: Large field of view.
- Collimator: Low energy, high resolution, parallel hole.
- Energy window: 20% window centered at 80 keV.
- Gas dispenser with return trap and 3 way valve.

Radiopharmaceutical, Dose, & Technique of Administration
- Radiopharmaceutical (10): Xe-133 gas.
- Dose: 4 - 20 mCi (148 - 740 MBq). Pedi dose by NACG chart.
- Technique of administration: Xenon delivery system with trap:
1. Fit the patient with a tightly fitting mask or a mouth piece and nose clamp.
2. Attach the xenon delivery system for injection of Xe-133 gas and collection of exhaled Xe-133 gas.
3. Set the valves so the patient is breathing from and into the xenon system, i.e. a closed system.

Patient Position & Imaging Field

- Patient position: Sitting (supine if unable to sit).
- Imaging field: Entire lungs; the Xe-133 dose may be used as a transmission source to ensure that the lungs are all within the field of view.

Acquisition Protocol

- Be sure a new external filter is in the gas delivery system.
- Acquire a single breath (ventilation) image:
 1. Instruct the patient to take a deep breath as the Xe-133 gas bolus is injected into the delivery system and then hold the breath as long as possible.
 2. Acquire Anterior/Posterior image for 20 seconds
- Equilibrate the concentration of Xe-133 gas within the patient’s lungs:
 1. Have the patient breathe normally for 3 minutes.
- Acquire equilibrium (airspace) images:
 1. Acquire 20 second images in LAO/RPO, both Laterals, LPO/RAO
- Acquire a series of washout (airway obstruction) analog images:
 1. Change the system valve so that the patient breathes room air in and exhales Xe-133 into the system trap.
 2. Beginning immediately, acquire sequential 20 second images until the Xe-133 gas is gone as judged from the persistence scope. Acquire a minimum of 4 images.
- Close the xenon delivery system and remove the mask from the patient’s face.
Protocol Summary Diagram

Xe-133-gas → Equilibrate → Single breath → Airspace & washout images

Time:
- 0 sec
- 20 sec
- 3.5 min
- 10 min

Data Processing

- None

Principle Radiation Emission Data - Xe-133

- Physical half-life = 5.25 days.

<table>
<thead>
<tr>
<th>Radiation</th>
<th>Mean % per disintegration</th>
<th>Mean energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-2</td>
<td>99.3</td>
<td>100.5</td>
</tr>
<tr>
<td>Ce-K-2</td>
<td>52.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Ce-L-2</td>
<td>8.5</td>
<td>75.3</td>
</tr>
<tr>
<td>Ce-M-2</td>
<td>2.3</td>
<td>79.8</td>
</tr>
<tr>
<td>Gamma-2</td>
<td>37.1</td>
<td>81.0</td>
</tr>
<tr>
<td>K alpha 2 x-ray</td>
<td>13.3</td>
<td>30.6</td>
</tr>
<tr>
<td>K alpha 1 x-ray</td>
<td>24.6</td>
<td>31.0</td>
</tr>
<tr>
<td>K beta x-rays</td>
<td>8.8</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Dosimetry - Xe-133 Gas

<table>
<thead>
<tr>
<th>Organ</th>
<th>rads/20 mCi</th>
<th>mGy/740 MBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lungs</td>
<td>0.17</td>
<td>1.7</td>
</tr>
<tr>
<td>Whole body</td>
<td>0.002</td>
<td>0.02</td>
</tr>
<tr>
<td>Brain</td>
<td>0.001</td>
<td>0.01</td>
</tr>
</tbody>
</table>