Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality.
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
PEDIATRIC ORAL CONTRAST DOSE CHART

If patient is allergic to Iodine notify Radiologist

Chart is for patients weighing up to 36kg. Patients over 36kg will receive maximum dose. See below

- Round weight to nearest whole kilogram
- Diluents may be non-carbonated beverage or water (formula or milk if newborn to 6 months). Give by mouth.

Gastrographin 30 ml: must be diluted before administration

- 30ml vial: Distribute 15ml of contrast in 12oz of water or non-carbonated beverage x 2 cups for a total dose of 30ml in 24oz.
- Patient drinks both cups consecutively at the time specified by CT Technologist.

2% Barium Sulfate: *Give only if patient is allergic to iodine.*

- 1 X 450ml bottles for a total dose of 450ml. (Do not dilute)
- Patient drinks during the amount of time specified by the CT Technologist.

Omnipaque: must be diluted before administration

- Pedi calculation = 0.86 ml x the patient’s weight in kg = (Volume of Omnipaque x 30ml of diluent) = total volume

Example: 0.86ml x 10 kg = 8.6 ml of Omnipaque x 30ml of diluent = 258 ml total volume

(Total Volume is the dose of Omnipaque plus the diluents needed for the final dose for this patient)

Diluents may be noncarbonated beverage or water (formula or milk may be used.)

Oral administration

- **Max patient weight for this formula is 36kg. If patient weight is 36kg or greater, the patient will receive the maximum dose of Omnipaque specified on the dosage chart.**

The time and rate of administration will be communicated by the CT Technologist based on the following time schedule.

- 0-10 kg drinks oral prep over thirty minutes
- 10-20kg drinks oral prep over one hour (1)
- 20-36kg drinks oral prep over one to one and a half hours (1.5)

Back to Pedi Body Protocol Page

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Pediatric Oral Contrast Dosage Chart

- If patient is allergic to iodine notify Radiologist

Chart is for patients weighing up to 35kg. Patients over 36kg will receive maximum dose. See below

- Round weight to nearest whole kilogram
- Diluents may be non-carbonated beverage or water (formula or milk if newborn to 6 months). Give by mouth.

<table>
<thead>
<tr>
<th>Weight in KG</th>
<th>Oral Omnipaque 240-300</th>
<th>Amount of Diluent</th>
<th>Total Volume (Omnipaque vol + Diluent volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>99</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>125</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>151</td>
<td>186</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>174</td>
<td>180</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>200</td>
<td>207</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>223</td>
<td>231</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>249</td>
<td>258</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>275</td>
<td>285</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>299</td>
<td>309</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>325</td>
<td>336</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>348</td>
<td>360</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>377</td>
<td>390</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>400</td>
<td>414</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>423</td>
<td>438</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>450</td>
<td>465</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>473</td>
<td>489</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>499</td>
<td>516</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>522</td>
<td>540</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>551</td>
<td>570</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>574</td>
<td>594</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>597</td>
<td>618</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>623</td>
<td>645</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>650</td>
<td>672</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>673</td>
<td>696</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>696</td>
<td>720</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>725</td>
<td>750</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>748</td>
<td>774</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>774</td>
<td>801</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>797</td>
<td>825</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>824</td>
<td>852</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>847</td>
<td>876</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>870</td>
<td>900</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>899</td>
<td>930</td>
</tr>
<tr>
<td>>36</td>
<td>36</td>
<td>899</td>
<td>930</td>
</tr>
</tbody>
</table>

Formula used in calculations: Omnipaque 240 0.86ml/kg x Ft kg weight = Omnipaque amount (mls)
Omnipaque amount (mls) x 3mls diluent = Total volume
Total volume - Omnipaque vol = Diluent volume (mls)

Back to Pedi Body Protocol Page
Patient Positioning

- Both arms should be raised above the head for optimal image quality
- If the patient cannot raise one arm, one arm down is preferred to both arms down and this information should be documented in tech notes for the radiologist
- If both arms are unable to be raised, this information should be documented in tech notes for the radiologist
- Shield patient when possible

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
IV GUIDELINES

IV Contrast at the discretion of the Radiologist

<table>
<thead>
<tr>
<th>Catheter</th>
<th>Injection Rate</th>
<th>PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD Nexiva Diffusics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24g</td>
<td>Less than or equal to 2cc/sec</td>
<td>325</td>
</tr>
<tr>
<td>22g</td>
<td>Less than 4cc/sec</td>
<td>325</td>
</tr>
<tr>
<td>20g</td>
<td>Greater than 4cc/sec</td>
<td>325</td>
</tr>
<tr>
<td>B Braun Safety Introcan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24g</td>
<td>HAND INJECTION ONLY</td>
<td></td>
</tr>
<tr>
<td>22g</td>
<td>Less than or equal to 2cc/sec</td>
<td>300</td>
</tr>
<tr>
<td>20g</td>
<td>Less than or equal to 4cc/sec</td>
<td>300</td>
</tr>
<tr>
<td>18g</td>
<td>Less than or equal to 6cc/sec</td>
<td>300</td>
</tr>
<tr>
<td>B Braun Safety 3 Introcan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24g</td>
<td>Less than or equal to 2.5cc/sec</td>
<td>325</td>
</tr>
<tr>
<td>22g</td>
<td>Less than or equal to 3.5cc/sec</td>
<td>325</td>
</tr>
<tr>
<td>20g</td>
<td>Less than or equal to 4cc/sec</td>
<td>325</td>
</tr>
<tr>
<td>18g</td>
<td>Less than or equal to 5cc/sec</td>
<td>325</td>
</tr>
</tbody>
</table>

PEDI CHEST/ABDOMEN/PELVIS AND PEDI ABDOMEN/PELVIS

Set injection Rate on Power injector based on pt's weight

<table>
<thead>
<tr>
<th>Weight Range</th>
<th>Injection Rate</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td><30 lbs</td>
<td>1ml per lb @1.5 ml/sec</td>
<td>60 sec delay</td>
</tr>
<tr>
<td>31-50 lbs</td>
<td>40ml @1.5/sec</td>
<td>60 sec delay</td>
</tr>
<tr>
<td>51-100 lbs</td>
<td>50ml @1.5 ml/sec</td>
<td>60 sec delay</td>
</tr>
<tr>
<td>101-210 lbs</td>
<td>75ml @ 2.0 ml/sec</td>
<td>60 sec delay</td>
</tr>
</tbody>
</table>

St. David’s Facilities for contrast protocol please refer to: St. David’s Health Care- Imaging Medication Dose Protocol- Adult and Pediatric.

* Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
PEDIATRIC CT BODY GENERAL GUIDELINES

Abdomen
- Abdomen only orders for pain must be verified with the referring clinician/radiologist that pelvis is not needed
- If IV access is obtained and the patient presents with acute right lower quadrant pain or are here to evaluate for appendicitis oral prep is not needed

Delayed imaging of the Kidneys, Ureters and Bladder for:
- H/O Trauma, Hydronephrosis, Immune-Compromised with suspected infection
- Consult with Radiologist on any other circumstances where additional imaging may be needed.

Chest
- Pediatric Radiologist needs to be consulted for special instructions when a patient presents with a diagnosis of empyema and or pleural effusion
- Shield patient when possible

Back to Pedi Body Protocol Page

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

CTDvol: ~5-10 mGy

- Pediatric Radiologist needs to be consulted for special instructions when a patient presents with a diagnosis of empyema and or pleural effusion

Setup:
Supine, AP Scout from above the diaphragm through the costophrenic angles, patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:
- IV Contrast administered according to chart at the discretion of the Radiologist

<table>
<thead>
<tr>
<th>Set injection Rate on Power injector based on pt's weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><35 lbs</td>
<td>20ml @1.5ml/ sec</td>
</tr>
<tr>
<td>36-55 lbs</td>
<td>40ml @ 2.0 ml/sec</td>
</tr>
<tr>
<td>>56 lbs</td>
<td>50ml @ 2.0 ml/sec</td>
</tr>
</tbody>
</table>

PACS Series:
- Topogram
- 3x3 Soft Tissue
- 3x3 Lung
- 3x3 Soft Tissue Coronal
- 3x3 Soft Tissue Sagittal
- Dose Report/ Protocol Page

Back to Pedi Body Protocol Page
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.3</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>32 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.6</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>65</td>
</tr>
<tr>
<td>kVp</td>
<td>110</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Reconstruction Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 1 Soft Tissue</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I31s Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td>Recon 2 Lung</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I50s Medium Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td>Recon 3 Coronal</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I31s Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td>Protocol Designed to Minimize the Amount of Radiation While Maximizing the Yield and Produce Diagnostically Acceptable Image Quality</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Back to Pedi Body Protocol Page*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I31s Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 5 Reformat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I31s Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 1.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.3</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>32 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.6</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>75</td>
</tr>
<tr>
<td>kVp</td>
<td>110</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Recon 1 Soft Tissue</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I31s Medium Smooth +</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 3 Coronal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I31s Medium Smooth +</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I31s Medium Smooth +</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>
Setup:
1. Supine, AP Scout from above apices through the adrenal glands, patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:

Supine:
1. Scan from above the apices through the adrenal glands

Dynamic Expiration:
1. These axial/sequential scans will be performed while the patient is actively breathing out
 - While in the supine position have the patient take in a full breath and slowly breathe out.
 - While the patient is breathing out 5 rapid sequential scans will be performed at the same table position. This will be done at three different levels.
2. There will be 5 sequential 2-2.5 mm axial scans performed at three different levels
 - Upper Chest ~ midway between the carina and apices
 - Mid Chest at the level of the carina
 - Lower Chest ~ midway between the carina and the costophrenic angles

Reconstruction:
1. Recon 1 is a Soft Tissue axial data set
2. Recon 2 is a Lung axial data set
3. MPR’s should be reconstructed at 1mm x 5mm in a lung algorithm/kernel

PACS Series:
- Topogram Supine
- Mediastinum
- Lung
- Lung Coronal
- Lung Sagittal
- Dynamic Lung Expiration 1
- Dynamic Lung Expiration 2
- Dynamic Lung Expiration 3
- Patient Protocol/Dose Report

Back to Pedi Body Protocol Page
Acquisition Parameters

<table>
<thead>
<tr>
<th>Supine Spiral Acquisition</th>
<th>Sequential Expiration Acquisitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Sequential</td>
</tr>
<tr>
<td>Pitch</td>
<td>Quick 0.4s</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>2 x 1.0</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>1.5 s</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>55</td>
</tr>
<tr>
<td>kVp</td>
<td>110</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Recon 1 Soft Tissue</th>
<th>Recon 2 Lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I50s Medium Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAS</td>
<td>55</td>
</tr>
<tr>
<td>kVp</td>
<td>110</td>
</tr>
<tr>
<td>Feed</td>
<td>0 mm</td>
</tr>
<tr>
<td>Number of scans</td>
<td>5</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

<table>
<thead>
<tr>
<th>Recon 3 Coronal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I50s Medium Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.0 x 5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I50s Medium Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.0 x 5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 5 Reformat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I31s Medium Smooth +</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expiration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>B80s very sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>None</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 mm</td>
</tr>
</tbody>
</table>

Back to Pedi Body Protocol Page
Setup:
Supine, AP Scout from above the apices through the costophrenic angles, Patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:
Acquire images during full inspiration from above the apices through the costophrenic angles

PACS Series:
- Topogram
- 2x2 Soft Tissue
- 2x2 Lung
- 2x2 Bone
- 2x2 Soft Tissue Coronal
- 2x2 Soft Tissue Sagittal
- 2x2 Bone Coronal
- 2x2 Bone Sagittal
- Dose Report/ Protocol Page
Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.3</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>32 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.6</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>65</td>
</tr>
<tr>
<td>kVp</td>
<td>110</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Reconstruction Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 1 Soft Tissue</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I31s Medium Smooth +</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 2 Lung</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I50s Medium Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 3 Bone</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I80s Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>3</td>
</tr>
<tr>
<td>Window</td>
<td>Osteo</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
<table>
<thead>
<tr>
<th>Reconstruction</th>
<th>Kernel</th>
<th>Window</th>
<th>Slice Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 4 Coronal ST</td>
<td>I31s Medium Smooth +</td>
<td>Mediastinum</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 5 Sagittal ST</td>
<td>I31s Medium Smooth +</td>
<td>Mediastinum</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 6 Coronal Bone</td>
<td>I80s Very Sharp</td>
<td>Osteo</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 7 Sagittal Bone</td>
<td>I80s Very Sharp</td>
<td>Osteo</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 8 Reformat</td>
<td>I31s Medium Smooth +</td>
<td>Osteo</td>
<td>2.0 x 1.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

SIEMENS DEFINITION 64

CTDvol: ~5-10 mGy

- Pediatric Radiologist needs to be consulted for special instructions when a patient presents with a diagnosis of empyema and or pleural effusion

Setup:

Supine, AP Scout from above the diaphragm through the costophrenic angles, patient to be shielded with lead skirt

DFOV:

Appropriate for patients body habitus

Scan Parameters:
- IV Contrast administered according to chart at the discretion of the Radiologist

<table>
<thead>
<tr>
<th>Set injection Rate on Power injector based on pt's weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><35 lbs</td>
</tr>
<tr>
<td>36-55 lbs</td>
</tr>
<tr>
<td>>56 lbs</td>
</tr>
</tbody>
</table>

PACS Series:
- Topogram
- 3x3 Soft Tissue
- 3x3 Lung
- 3x3 Soft Tissue Coronal
- 3x3 Soft Tissue Sagittal
- Dose Report/ Protocol Page

Back to Pedi Body Protocol Page

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.0</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>50</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

Recon 1 Soft Tissue

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Recon 2 Lung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>none</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

<table>
<thead>
<tr>
<th>Recon 3 Coronal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 5 Reformat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.5 x 0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 6 Lung MIP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>10.0 x 7.0</td>
</tr>
</tbody>
</table>

Back to Pedi Body Protocol Page
Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.2</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>80</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

Recon 1 Soft Tissue

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Recon 2 Lung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>none</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Recon 3 Coronal

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th>Kernel</th>
<th>I41f Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFIRE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
<td></td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 5 Reformat</th>
<th>Kernel</th>
<th>I41f Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFIRE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
<td></td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.5 x 0.65</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 6 Lung MIP</th>
<th>Kernel</th>
<th>I30f Medium Smooth</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFIRE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
<td></td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>10.0 x 7.0</td>
<td></td>
</tr>
</tbody>
</table>

Back to Pedi Body Protocol Page
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.2</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>80</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Recon 1 Soft Tissue</th>
<th>Kernel</th>
<th>SAFIRE</th>
<th>Window</th>
<th>Slice Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I41f Medium</td>
<td>2</td>
<td>Abdomen</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 3 Coronal</th>
<th>Kernel</th>
<th>SAFIRE</th>
<th>Window</th>
<th>Slice Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I41f Medium</td>
<td>2</td>
<td>Abdomen</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<p>| Recon 4 Sagittal | | | | |</p>
<table>
<thead>
<tr>
<th>Kernel</th>
<th>I41f Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Setup:
1. Supine, AP Scout from above apices through the adrenal glands, patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:

Supine:
1. Scan from above the apices through the adrenal glands

Dynamic Expiration:
1. These axial/sequential scans will be performed while the patient is actively breathing out
 • While in the supine position have the patient take in a full breath and slowly breathe out.
 • While the patient is breathing out 5 rapid sequential scans will be performed at the same table position. This will be done at three different levels.
2. There will be 5 sequential 2-2.5 mm axial scans performed at three different levels
 • Upper Chest ~ midway between the carina and apices
 • Mid Chest at the level of the carina
 • Lower Chest~ midway between the carina and the costophrenic angles

Reconstruction:
1. Recon 1 is a Soft Tissue axial data set
2. Recon 2 is a Lung axial data set
3. MPR’s should be reconstructed at 1mm x 5mm in a lung algorithm/kernel

PACS Series:
- Topogram Supine
- Mediastinum
- Lung
- Lung Coronal
- Lung Sagittal
- Dynamic Lung Expiration 1
- Dynamic Lung Expiration 2
- Dynamic Lung Expiration 3
- Patient Protocol/Dose Report

Back to Pedi Body Protocol Page
Acquisition Parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine Spiral Acquisition</td>
<td>Sequential Expiration Acquisitions</td>
</tr>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.2</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>64 x 0.6</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>50</td>
</tr>
<tr>
<td>Care kV on</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scan Type</td>
</tr>
<tr>
<td></td>
<td>Spiral</td>
</tr>
<tr>
<td></td>
<td>Scan Time</td>
</tr>
<tr>
<td></td>
<td>Full 0.33s</td>
</tr>
<tr>
<td></td>
<td>Detector Configuration</td>
</tr>
<tr>
<td></td>
<td>Slice Thickness</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Cycle Time</td>
</tr>
<tr>
<td></td>
<td>0.66s</td>
</tr>
<tr>
<td></td>
<td>Care Dose</td>
</tr>
<tr>
<td></td>
<td>on</td>
</tr>
<tr>
<td></td>
<td>Quality Ref mAs</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Care kV on</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Slider Position</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Feed</td>
</tr>
<tr>
<td></td>
<td>0 mm</td>
</tr>
<tr>
<td></td>
<td>Number of scans</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 1 Soft Tissue</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Recon 2 Lung</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I50f Medium Sharp ASA</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.0 x 5.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Recon 3 Coronal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>50f Medium Sharp ASA</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.0 x 5.0</td>
</tr>
</tbody>
</table>

Recon 4 Sagittal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>50f Medium Sharp ASA</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.0 x 5.0</td>
</tr>
</tbody>
</table>

Recon 5 Reformat

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.0 x 0.5</td>
</tr>
</tbody>
</table>

Expiration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>B80f ultra sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>None</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 mm</td>
</tr>
</tbody>
</table>
Setup:
Supine, AP Scout from above the apices through the costophrenic angles, Patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:
Acquire images during full inspiration from above the apices through the costophrenic angles

PACS Series:
- Topogram
- 2x2 Soft Tissue
- 2x2 Lung
- 2x2 Bone
- 2x2 Soft Tissue Coronal
- 2x2 Soft Tissue Sagittal
- 2x2 Bone Coronal
- 2x2 Bone Sagittal
- Dose Report/ Protocol Page

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality.

Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.0</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>50</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

Recon 1 Soft Tissue

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
</tbody>
</table>

Recon 2 Lung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>none</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 3 Coronal</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 5 Reformat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.5 x 0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 6-8 Bone axial/cor/sag</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>0</td>
</tr>
<tr>
<td>Window</td>
<td>Osteo</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

GE OPTIMA

CTDvol: ~5-10 mGy

- Pediatric Radiologist needs to be consulted for special instructions when a patient presents with a diagnosis of empyema and or pleural effusion

Setup:

Supine, AP Scout from above the diaphragm through the costophrenic angles, patient to be shielded with lead skirt

DFOV:

Appropriate for patients body habitus

Scan Parameters:

- IV Contrast administered according to chart at the discretion of the Radiologist

<table>
<thead>
<tr>
<th>Set injection Rate on Power injector based on pt's weight</th>
<th><35 lbs</th>
<th>36-55 lbs</th>
<th>>56 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td><35 lbs</td>
<td>20ml @ 1.5ml/ sec</td>
<td>40ml @ 2.0 ml/sec</td>
<td>50ml @ 2.0 ml/sec</td>
</tr>
<tr>
<td>36-55 lbs</td>
<td>15 sec delay</td>
<td>20 sec delay</td>
<td>25 sec delay</td>
</tr>
<tr>
<td>>56 lbs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PACS Series:

- Topogram
- 3x3 Soft Tissue
- 3x3 Lung
- 3x3 Soft Tissue Coronal
- 3x3 Soft Tissue Sagittal
- Dose Report/ Protocol Page

Back to Pedi Body Protocol Page
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 2 Lung</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Lung</td>
</tr>
<tr>
<td>ASIR</td>
<td>none</td>
</tr>
<tr>
<td>Recon Type</td>
<td>Full</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.5</td>
</tr>
<tr>
<td>Increment</td>
<td>2.5</td>
</tr>
<tr>
<td>Recon 3 (thins) for reformats</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Standard</td>
</tr>
<tr>
<td>ASIR</td>
<td>40</td>
</tr>
<tr>
<td>Recon Type</td>
<td>Full</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.25</td>
</tr>
<tr>
<td>Increment</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality.

Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Helical</td>
</tr>
<tr>
<td>Pitch and Speed (mm/rot)</td>
<td>0.969:1</td>
</tr>
<tr>
<td></td>
<td>(19.38)</td>
</tr>
<tr>
<td>Detector Coverage</td>
<td>20 mm</td>
</tr>
<tr>
<td>Thick</td>
<td>2.5</td>
</tr>
<tr>
<td>Speed</td>
<td>0.5</td>
</tr>
<tr>
<td>Noise index</td>
<td>15.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT body size</td>
<td>13-31.4 lbs</td>
</tr>
<tr>
<td>Scan FOV</td>
<td>Sm. Body</td>
</tr>
<tr>
<td>Smart mA Range</td>
<td>50-200</td>
</tr>
<tr>
<td>kVp</td>
<td>80</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 1 Soft Tissue</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Standard</td>
</tr>
<tr>
<td>ASIR</td>
<td>40</td>
</tr>
<tr>
<td>Recon Type</td>
<td>Full</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.5</td>
</tr>
<tr>
<td>Increment</td>
<td>2.5</td>
</tr>
<tr>
<td>Recon 2 (thins) for reformats</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Standard</td>
</tr>
<tr>
<td>ASIR</td>
<td>40</td>
</tr>
<tr>
<td>Recon Type</td>
<td>Full</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.25</td>
</tr>
<tr>
<td>Increment</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Setup:
1. Supine, AP Scout from above apices through the adrenal glands, patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:

Supine:
1. Scan from above the apices through the adrenal glands

Dynamic Expiration:
1. These axial/sequential scans will be performed while the patient is actively breathing out
 - While in the supine position have the patient take in a full breath and slowly breathe out.
 - While the patient is breathing out 5 rapid sequential scans will be performed at the same table position. This will be done at three different levels.
2. There will be 5 sequential 2-2.5 mm axial scans performed at three different levels
 - Upper Chest – midway between the carina and apices
 - Mid Chest at the level of the carina
 - Lower Chest – midway between the carina and the costophrenic angles

Reconstruction:
1. Recon 1 is a Soft Tissue axial data set
2. Recon 2 is a Lung axial data set
3. MPR’s should be reconstructed at 1mm x 5mm in a lung algorithm/kernel

PACS Series:
- Topogram Supine
- Mediastinum
- Lung
- Lung Coronal
- Lung Sagittal
- Dynamic Lung Expiration 1
- Dynamic Lung Expiration 2
- Dynamic Lung Expiration 3
- Patient Protocol/Dose Report

Back to Pedi Body Protocol Page
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Acquisition Parameters

<table>
<thead>
<tr>
<th>Scan Type</th>
<th>Helical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch and Speed (mm/rot)</td>
<td>0.969:1 (19.38)</td>
</tr>
<tr>
<td>Detector Coverage</td>
<td>20 mm</td>
</tr>
<tr>
<td>Thick</td>
<td>2.5</td>
</tr>
<tr>
<td>Speed</td>
<td>0.5</td>
</tr>
<tr>
<td>Noise index</td>
<td>18</td>
</tr>
</tbody>
</table>

Sequential Expiration Acquisitions

<table>
<thead>
<tr>
<th>Scan Type</th>
<th>Axial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation Time</td>
<td>0.5 s</td>
</tr>
<tr>
<td>Thick/Speed</td>
<td>1.25 1i</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.25</td>
</tr>
<tr>
<td>Rotation Length</td>
<td>Full</td>
</tr>
<tr>
<td>Auto mA</td>
<td>on</td>
</tr>
<tr>
<td>Smart mA Range</td>
<td>50-100</td>
</tr>
<tr>
<td>Noise Index</td>
<td>15</td>
</tr>
<tr>
<td>kVp</td>
<td>80</td>
</tr>
<tr>
<td>Interval</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>Number of scans</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PT body size</th>
<th>13-31.4 lbs</th>
<th>31.5-40.4 lbs</th>
<th>40.5-69.4 lbs</th>
<th>69.5-121 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan FOV</td>
<td>Sm. Body</td>
<td>Sm. Body</td>
<td>Sm. Body</td>
<td>Lg. Body</td>
</tr>
<tr>
<td>Smart mA Range</td>
<td>50-150</td>
<td>50-200</td>
<td>50-225</td>
<td>50-225</td>
</tr>
<tr>
<td>kVp</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Recon 1 Soft Tissue</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>Standard</td>
</tr>
<tr>
<td>ASIR</td>
<td>40</td>
</tr>
<tr>
<td>Recon Type</td>
<td>Full</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.5</td>
</tr>
<tr>
<td>Increment</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Recon 2 Lung

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIR</td>
<td>none</td>
</tr>
<tr>
<td>Recon Type</td>
<td>Full</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.25</td>
</tr>
<tr>
<td>Increment</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Recon 3 (thins) for reformats

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIR</td>
<td>none</td>
</tr>
<tr>
<td>Recon Type</td>
<td>Full</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.25</td>
</tr>
<tr>
<td>Increment</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Back to Pedi Body Protocol Page
Setup:
Supine, AP Scout from above the apices through the costrophrenic angles, Patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:
Acquire images during full inspiration from above the apices through the costrophrenic angles

PACS Series:
- Topogram
- 2.5 x 2.5 Soft Tissue
- 2.5 x 2.5 Lung
- 2.5 x 2.5 Bone
- 2.5 x 2.5 Soft Tissue Coronal
- 2.5 x 2.5 Soft Tissue Sagittal
- 2.5 x 2.5 Bone Coronal
- 2.5 x 2.5 Bone Sagittal
- Dose Report/ Protocol Page

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality.

SIEMENS DEFINITION 40

CTDVol: ~5-10 mGy

- Pediatric Radiologist needs to be consulted for special instructions when a patient presents with a diagnosis of empyema and or pleural effusion

Setup:

Supine, AP Scout from above the diaphragm through the costophrenic angles, patient to be shielded with lead skirt

DFOV:

Appropriate for patients body habitus

Scan Parameters:

- IV Contrast administered according to chart at the discretion of the Radiologist

<table>
<thead>
<tr>
<th>Set injection Rate on Power injector based on pt's weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><35 lbs</td>
</tr>
<tr>
<td>36-55 lbs</td>
</tr>
<tr>
<td>>56 lbs</td>
</tr>
</tbody>
</table>

PACS Series:

- Topogram
- 3x3 Soft Tissue
- 3x3 Lung
- 3x3 Soft Tissue Coronal
- 3x3 Soft Tissue Sagittal
- Dose Report/ Protocol Page

Back to Pedi Body Protocol Page
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.2</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>50</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Reconstruction</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 1 Soft Tissue</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td>Recon 2 Lung</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>none</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td>Recon 3 Coronal</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 5 Reformat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.5 x 0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 6 Lung MIP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>10.0 x 7.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Back to Pedi Body Protocol Page
Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.2</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>80</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Reconstructed Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 1 Soft Tissue</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
<tr>
<td>Recon 2 Lung</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>none</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
<table>
<thead>
<tr>
<th>Recon 3 Coronal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 4 Sagittal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 5 Reformat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.5 x 0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recon 6 Lung MIP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>10.0 x 7.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.2</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>80</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 1 Soft Tissue</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reconstruct Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon 3 Coronal</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Recon 4 Sagittal

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>i30f Medium Smooth</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>3.0 x 3.0</td>
</tr>
</tbody>
</table>

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality.
Setup:
1. Supine, AP Scout from above apices through the adrenal glands, patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:

Supine:
1. Scan from above the apices through the adrenal glands

Dynamic Expiration:
1. These axial/sequential scans will be performed while the patient is actively breathing out
 - While in the supine position have the patient take in a full breath and slowly breathe out.
 - While the patient is breathing out 5 rapid sequential scans will be performed at the same table position. This will be done at three different levels.
2. There will be 5 sequential 2-2.5 mm axial scans performed at three different levels
 - Upper Chest ~ midway between the carina and apices
 - Mid Chest at the level of the carina
 - Lower Chest ~ midway between the carina and the costophrenic angles

Reconstruction:
1. Recon 1 is a Soft Tissue axial data set
2. Recon 2 is a Lung axial data set
3. MPR’s should be reconstructed at 1mm x 5mm in a lung algorithm/kernel

PACS Series:
- Topogram Supine
- Mediastinum
- Lung
- Lung Coronal
- Lung Sagittal
- Dynamic Lung Expiration 1
- Dynamic Lung Expiration 2
- Dynamic Lung Expiration 3
- Patient Protocol/Dose Report

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Acquisition Parameters

<table>
<thead>
<tr>
<th>Supine Spiral Acquisition</th>
<th>Sequential Expiration Acquisitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Scan Type</td>
</tr>
<tr>
<td>Spiral</td>
<td>Sequential</td>
</tr>
<tr>
<td>Pitch</td>
<td>Scan Time</td>
</tr>
<tr>
<td>1.2</td>
<td>Full 0.33s</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>Detector Configuration</td>
</tr>
<tr>
<td>40 x 0.6</td>
<td>2 x 1.0</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>Slice Thickness</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>Cycle Time</td>
</tr>
<tr>
<td>0.5</td>
<td>0.66s</td>
</tr>
<tr>
<td>Care Dose</td>
<td>Care Dose</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>Quality Ref mAS</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Care kV on</td>
<td>Care kV on</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>Slider Position</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

<table>
<thead>
<tr>
<th>Recon 1 Soft Tissue</th>
<th>Recon 2 Lung</th>
<th>Recon 3 Coronal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>Kernel</td>
<td></td>
</tr>
<tr>
<td>I31f Medium Smooth</td>
<td>I70f Very Sharp ASA</td>
<td></td>
</tr>
<tr>
<td>SAFIRE</td>
<td>SAFIRE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Window</td>
<td></td>
</tr>
<tr>
<td>Mediastinum</td>
<td>Lung</td>
<td></td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>Slice Thickness</td>
<td></td>
</tr>
<tr>
<td>3.0 x 3.0</td>
<td>1.0 x 5.0</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Kernel</td>
<td>SAFIRE</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality</td>
<td>I70f Medium Sharp ASA</td>
<td>2</td>
</tr>
<tr>
<td>Recon 4 Sagittal</td>
<td>Kernel</td>
<td>SAFIRE</td>
</tr>
<tr>
<td></td>
<td>I70f Medium Sharp ASA</td>
<td>2</td>
</tr>
<tr>
<td>Recon 5 Reformat</td>
<td>Kernel</td>
<td>SAFIRE</td>
</tr>
<tr>
<td></td>
<td>I41f Medium</td>
<td>2</td>
</tr>
<tr>
<td>Expiration</td>
<td>Kernel</td>
<td>SAFIRE</td>
</tr>
<tr>
<td></td>
<td>B80f ultra sharp</td>
<td>None</td>
</tr>
</tbody>
</table>

[Back to Pedi Body Protocol Page]
Setup:
Supine, AP Scout from above the apices through the costrophrenic angles, Patient to be shielded with lead skirt

DFOV:
Appropriate for patients body habitus

Scan Parameters:
Acquire images during full inspiration from above the apices through the costrophrenic angles

PACS Series:
- Topogram
- 2x2 Soft Tissue
- 2x2 Lung
- 2x2 Bone
- 2x2 Soft Tissue Coronal
- 2x2 Soft Tissue Sagittal
- 2x2 Bone Coronal
- 2x2 Bone Sagittal
- Dose Report/ Protocol Page

Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Type</td>
<td>Spiral</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.2</td>
</tr>
<tr>
<td>Detector Configuration</td>
<td>16 x 1.2</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0</td>
</tr>
<tr>
<td>Rotation Time</td>
<td>0.5</td>
</tr>
<tr>
<td>Care Dose</td>
<td>on</td>
</tr>
<tr>
<td>Quality Ref mAs</td>
<td>50</td>
</tr>
<tr>
<td>Care kV</td>
<td>on</td>
</tr>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>Slider Position</td>
<td>7</td>
</tr>
</tbody>
</table>

Reconstruction Parameters

Recon 1 Soft Tissue

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
</tbody>
</table>

Recon 2 Lung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>none</td>
</tr>
<tr>
<td>Window</td>
<td>Lung</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Protocol Designed to Minimize the Amount of Radiation While Maximizing the Yield and Produce Diagnostically Acceptable Image Quality</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Recon 3 Coronal</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 4 Sagittal</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>I41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>2</td>
</tr>
<tr>
<td>Window</td>
<td>Mediastinum</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
<tr>
<td>Recon 5 Reformat</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>B41f Medium</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>0</td>
</tr>
<tr>
<td>Window</td>
<td>Osteo</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>1.5 x 0.7</td>
</tr>
<tr>
<td>Recon 6-8 Bone axial/cor/sag</td>
<td></td>
</tr>
<tr>
<td>Kernel</td>
<td>B70f Very Sharp</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>0</td>
</tr>
<tr>
<td>Window</td>
<td>Osteo</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>2.0 x 2.0</td>
</tr>
</tbody>
</table>
Protocol designed to minimize the amount of radiation while maximizing the yield and produce diagnostically acceptable image quality

<table>
<thead>
<tr>
<th>Protocol(s) Review Date</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/22/22</td>
<td>Deanne Young</td>
</tr>
<tr>
<td>8/22/23</td>
<td>Jamie Christenson</td>
</tr>
</tbody>
</table>

Back to Pedi Body Protocol Page